#### TECHNICAL SPECIFICATIONS

Through a set of simple and appropriate forms, the analysis and design of precast concrete bridge girder with pre-tension is carried automatically by the BSE Software according to the following specifications:

• The supported codes are CSA S6-14 and CSA S6-06

• Standard AASHTO, NEBT, NBPS and CPCI sections and custom precast sections.

• Automatic and custom transverse strands layouts.

• Straight strands with one or two raised points.

• Standard and custom moving load envelopes for truck and/or lane loads.

• Pre-tension losses calculated with specified code or through a step-by-step method.

• Design of precast girders for multiple span bridges with composite slab action.

• Design of stirrups along girders and design of steel reinforcement at supports.

• Account for thermal effects

• Account for the secondary effects from creep and shrinkage.

• Deflection of girder according to time.

The module combines the results obtained for the highway live load with other types of loads applied to a structure (dead weight, additional dead loads and live loads) to obtain a global solution as well as the corresponding envelopes.

#### MODEL PARAMETERS

•Custom precast section predefined shapes include the narrow top flange, the wide top flange and the bulb tee sections.

– Narrow Top Flange: Custom precast sections with narrow top flange similar to AASHTO-II sections.

– Wide Top Flange: Custom precast sections with wide top flange similar to AASHTO-V sections.

– Bulb Tee: Custom precast sections similar to NEBT standard sections.

#### VERIFICATION OF INPUT FIELDS

•The summary of the input data contains the following tables:

(General)

-Gap between Spans

-Reinf. ratio at interior supports

(Strands)

-Nominal Diameter (dn)

-Cross section area(At)

-Steel Ultimate Stress (fpu)

-Initial Stress in Strands (fpi= ratio of fpu)

-Steel Elastic Modulus (Eps)

(Moving Load)

-Lateral Distribution Coefficient

-Dynamic load allowance: Concentrated

-Dynamic load allowance: Uniform

-Concrete Compression Strength (f’cd)

-Concrete density

-Reinforcement Yield Stress (fy)

-Slab width (b)

-Slab Thickness (t)

-Haunch thickness (th)

(Stiffener Beams)

-Height (hr)

-Thickness (tr)

-Density

(Stirrups)

-Area of a Stirrup (Av) -Yield Stress of Stirrups (fv) (Thermal Gradients)

-Maximum Thermal Gradient

-Minimum Thermal Gradient

(Losses)

-Relative Humidity

-Area of Ordinary

Reinforcement Bars (As)

-Time T1 must be superior to -20.0 days

-Time T4 must be equal to 0.0 days

-Time T1 to T7 must be chosen in increasing order

-Time T7 must be inferior to 400 days

(Span Data)

-Span Length (Lp)

-Number of Stiffener -Beams between Supports

-Additional Dead Loads 1 and 2

-Live Load (Other than moving loads)

-Initial Concrete Resistance of Beams (f’co)

-Concrete Resistance of Beams at 28 days (f’c28)

-f’co resistance must be inferior or equal to f’c28

-Concrete density of Beams

-Number of Straight Strands (Ns)

-Number of Inclined Strands (Ni)

-(Ni) or (Ns) Value must be superior to zero

-Support distance from Raised Point L1 or L2

-Eccentricity of strands at Center (ec)

-Minimum Dist. of Inclined Strands to Bottom

-Distance C1 and C2

-Supports Tension (T)

•The summary of the output results includes : unfactored envelopes, factored envelopes, losses results, stresses of sections, ultimate flexural strength, continuity effects, stirrups design and deflection results.

#### THERMAL GRADIENTS PARAMETERS

•Thermal gradients must be considered in the design of a multi-span bridge where there is continuity at the supports.

•Thermal gradients can generate non-negligible forces in the structure.

•Thermal gradient: This value indicates the maximum temperature difference between the top of the slab and the bottom of the beam.

•The program assumes a linear temperature gradient on the depth of the composite beam.

#### TRANSVERSE STRANDS LAYOUT

•Transverse strands layouts for any standard or custom precast sections.

•All standard sections have built-in strands layout that can be overridden.

•The transverse strands layouts must be defined for custom precast sections.

•The transverse strands layout is defined for the maximum number of strands in the section.

•When the actual number of strands used is lower than the number defined in the layout, each row of strands is filled completely before filling the next row.

•When a standard section is selected, the default built-in layout for this section is automatically fetched to ease simple modifications.

•A custom layout does not overwrite the default layout, this default layout is still be available.

•The maximum number of straight and inclined strands for standard sections are specified.

•Spacing of strands : the center to center spacing between the strands.

•Inclined strands : Number of strands per row, maximum number of rows, minimum distance to side.

•Straight strands : Minimum distance to side.

•Number of straight strands per row : a maximum of 12 rows of straight strands is allowed.

#### CUSTOM MOVING LOADS

-ID: The unique identifier of the custom moving load. In most cases, this value is incremented automatically and need not be modified.

-Load Name: The name of the load. This name serves as a reference in other input forms in the program.

-Truck load:The dynamic load allowance for the truck load must be specified. The axle positions and loads must be specified in the table. The loads entered correspond to the full axle loads which are twice the wheel loads.

The position to enter in the table is the cumulative distance from the front axle. The first axle position is always 0. A maximum of 40 axles may be defined for each custom moving load.

-Lane load: The uniform lane load must be specified as well as the concentrated lane load. The concentrated lane load is specified as a ratio of the truck load.

#### MOVING LOADS PARAMETERS

•The moving standard loads as well as all custom moving loads available are:

– CL-625 (CSA S6-06 and CSA S6-14)

– CL-625-ONT (CSA S6-06 and CSA S6-14)

– CL-675 (CSA S6-06 and CSA S6-14)

– CF-3E (Quebec)

– QS660 (Quebec)

– MTQ-340 (Quebec)

– CS600 (CSA S6-88)

– OHBDC (Ontario)

– Egyptian Loads

– AASHTO (USA)

•The lateral distribution coefficients wizard calculates the lateral distribution coefficients with respect to the CAN/CSA S6 requirements.

#### SLAB PARAMETERS

•The reinforcing steel in the slab and in the stiffener beams at supports ensure the continuity of the deck at interior supports for the additional dead loads, as well as for the live loads.

•The required dimensions of the concrete slab are defined by the user.

-Concrete Resistance (f’cd): The ultimate stress (f’c) of the slab material.

-Concrete Density: The density of the slab material which is used to determine its self-weight.

-Reinforcement Yield Stress (Fy): The yield stress of the reinforcement bars material.

-Slab Width (b): The slab width with respect to the beam analyzed. For interior beams, it is equal to the distance between the beams while for exterior beams it is equal to half the distance from the beam analyzed and the adjacent beam plus the length of the cantilever part.

-Slab Thickness (t): The thickness of the slab.

-Haunch Thickness (th): The thickness of the haunch if any.

#### STIRRUP PARAMETERS

•The stirrups diameter and the yield stress of the stirrups material are defined.

•The spacing of the stirrups required to resist the shear forces is calculated .

•The stirrup spacing calculated by the program accounts for anchoring zones.

•The horizontal shear between the beam and the slab will be taken by the stirrups which will be extended in the slab.

#### STIFFENER BEAMS PARAMETERS

•The stiffener beams are added between the longitudinal beams.

•They enhance the lateral stability of the bridge and allow for a better distribution of forces on the width of the bridge.

•These stiffener beams are not designed by the program, their dimensions and material properties are required solely for determining their self weight.

•The number of stiffener beams between the supports can vary from one span to another.

#### SPAN DATA

The following data is to be defined:

– Span Length (Lp)

– Nb. Stiffener Beams between Supports

– Additional Dead Loads 1 and 2

– Live Loads (other than moving loads)

– Initial Concrete Resistance (f’co)

– Concrete Resistance at 28 Days (f’c28)

– Concrete Density

– Strands

– Nb. Straight Strands (Ns)

-Nb. Inclined Strands (Ni)

– Strands Raise Point: Left (L1) and Strands Raise Point: Right (L2)

– Eccentricity Calculation Method

– Eccentricity of Strands at Center (Ec)

– Min. Dist. of Inclined Strands to Bottom (Dbi)

– Left Support Constant (C1) and Right Support Constant (C2)

– Support Tension (T)