ANALYSE ET CONCEPTION
SIGNALISATION ROUTIÈRE

STRUCTURES SIGNALISATION ROUTIÈRE

LOGICIEL
HSE

Logiciel HSE HIGHWAY SIGN Structural Engineering

Le logiciel HSE Structures de Signalisation Routière est un logiciel automatisé de génération et de conception de structures de signalisation en treillis.

Cette solution d’ingénierie est utilisée à travers le monde dans un nombre important d’entreprises internationales dans le but de réaliser leurs divers projets d’infrastructures. Le logiciel HSE Structures de Signalisation Routière est basé sur plus de 34 ans de Recherche et Développement.

• Fonctionnalités productives et puissantes pour la génération de plusieurs types structures de signalisation en treillis incluant des structures en porte-à-faux et des portiques. Le générateur de modèle peut aussi créer des piédestaux et détermine tous les paramètres de conception comme les longueurs de flambement, les coefficients de forces et les zones de soudures.
• Des panneaux peuvent être créés de manière à appliquer des charges de vent, de glace ou de gravité à la structure.
• Charges de glace et de vent automatisées sur la structure et les panneaux.
• Paramètres requis de calculs de résistances (longueurs non supportées, longueurs de flambement, facteurs de flambement, etc.) personnalisables graphiquement ou par l’intermédiaire de chiffriers.
• Normes supportées:
◦AASHTO LTS-13 ASD (6e Edition)
◦AASHTO LTS-15 LRFD (1ère Edition)
◦CAN/CSA S157
◦American Aluminum Design Manual 2015

DÉMONSTRATION HSE
Highway Structures Engineering

Demandez une présentation en ligne afin de voir les capabilités du logiciel HSE Highway Sign Analysis and Design.

FONCTIONNALITÉ MISE À L'AVANT PLAN

FONCTIONNALITÉ // LOGICIEL HSE

ÉTAT LIMITE FATIGUE 

Une étape a été ajoutée dans l’assistant de signalisation routière afin que tous les paramètres de fatigue de la structure puissent être définis ici. Les CAFT (Constant Amplitude Fatigue Threshold) ou (DF) TH pour une durée de vie infinie pour les différentes catégories de détails de fatigue se trouvent dans les tableaux AASHTO LTS-13 (ASD) 11.9.3.1-1 et AASHTO LTS-15 (LRFD) 11.9.3.1 -1.

SPÉCIFICATIONS D'ANALYSE

ANALYSE SISMIQUE ET DYNAMIQUE

•Méthode simplifiée des codes du bâtiments CNBC et IBC
•Analyse sismique spectrale, sismique transitoire et dynamique transitoire
•Spectres de réponses et accélérogrammes personnalisés
•Paramètres d’analyse entièrement personnalisés
•Réponse maximale avec les méthodes CQC et SRSS
•Amortissement automatisé ou défini par l’utilisateur
•Affichage graphique des spectres et des accélérogrammes
•Angle d’incidence des charges sismiques et composantes verticales définies par l’utilisateur
•Intervalle de temps personnalisés pour l’analyse et pour les résultats
•Résultats raffinés pour des parties sélectionnées du modèle
•Détermination des signes des déformations fournie par les méthodes de réponses maximales automatisées ou selon un mode spécifique
•Les masses additionnelles peuvent être ajoutées au modèle par l’intermédiaire de charges statiques
•Charges sismiques (spectrale ou transitoire) et dynamiques (sinusoïdale, fonctions générales de charges et charges aléatoires)
•Charges sismiques et dynamiques multiples pouvant être combinées ensemble en une seule analyse
•Calibrage du cisaillement à la base selon le code du bâtiment sélectionné
•Possibilité de définir plusieurs charges sismiques et de considérer l’excentricité entre le centre de rigidité et le centre de masse
•Affichage graphique du centre de masse, du centre de rigidité et des forces sismiques aux étages
•Prise en compte des excentricités accidentelles
•Prise en compte des coefficients I, F et R du code CNBC et IBC dans les analyses spectrales et transitoires

CHARGES ET COMBINAISONS DE CHARGES

•Charges aux nœuds et aux membrures incluant les charges concentrées, uniformes, trapézoïdales et thermiques
•Pression ou charges concentrées sur des planchers avec distribution unidirectionnelle, bidirectionnelle et par l’intermédiaire de poutrelles en utilisant des surfaces triangulaires ou quadrilatérales
•Pression ou charges concentrées sur les plaques d’éléments finis
•Charges gravitationnelles dans n’importe quelle direction globale calculées par le logiciel
•Déplacements imposés appliqués à n’importe quel nœud
•Combinaisons de charges personnalisées
•L’assistant de combinaison de charges génère les combinaisons de charges selon les normes CNBC, UBC, ASCE 7, BOCA, Eurocode et ECC
•L’assistant de combinaison de charges génère les combinaisons de charges alternées

OPTIONS EXHAUSTIVES D'ANALYSE STRUCTURALE

Analyse par éléments finis, Analyse statique, Analyse linéaire et Analyse non linéaire, Analyse P-Delta, Analyse de fréquences, Analyse sismique statique équivalente, Analyse sismique et dynamique, Analyse transitoire, Analyse modale, Charges Spatiales et Objets spatiaux*, Analyse de flambement, Analyse sismique spectrale, Analyse avancée des contraintes des sections, Torsion et Gauchissement, Sections assemblées, Câbles caténaires*, Analyse des diaphragmes, Charge horizontale fictive, Charges et Combinaisons de charges.
*Nécessite le module d’analyse avancée

OBJETS SPATIAUX ET CHARGES SPATIALES

Les objets spatiaux peuvent servir à modéliser des éléments secondaires non structuraux attachés à la structure. Ces éléments n’ajoutent aucune rigidité à la structure existante. Les charges agissant sur un objet spatial seront retransmises à un ou plusieurs joints d’attaches. Les charges agissant sur l’objet spatial sont retransmises à ces joints selon une approche de « plaque rigide ».

*NÉCESSITE LE MODULE D’ANALYSE AVANCÉE

CÂBLES CATÉNAIRES

L’élément câble caténaire (appelé aussi chaînette) est un élément fortement non linéaire, utilisé pour modéliser le comportement caténaire d’un câble suspendu entre deux points sous l’effet de son poids propre. Cette formulation tient compte de la non-linéarité due aux grands déplacements. Un câble n’a aucune rigidité en flexion, en cisaillement, en compression ou en torsion. De ce fait, les fixités aux extrémités sont ignorées et les câbles sont toujours traités comme des membrures agissant en tension seulement.

*NÉCESSITE LE MODULE D’ANALYSE AVANCÉE

MÉTHODE D'ANALYSE DIRECTE

Cette option est disponible pour les normes AISC 360-16 et AISC 360-10. Les options pour la méthode de conception de la stabilité sont la méthode d’analyse directe (DAM) et la méthode de longueur effective (kL).

TORSION ET GAUCHISSEMENT

Le logiciel HSE considère le gauchissement dans la détermination des déformées de torsion et le calcul des contraintes dans les sections minces ouvertes. Notez que la grande majorité des logiciels ne considèrent pas ce phénomène et implémentent la théorie de torsion de St-Venant qui néglige les effets du gauchissement.

ÉTAT LIMITE FATIGUE

Le logiciel SAFI HSE inclut les états limites de fatigue.

Tous les paramètres de fatigue de la structure peuvent être définis dans l’assistant de signalisation routière. Les CAFT (Constant Amplitude Fatigue Threshold) ou (DF) TH pour une durée de vie infinie pour les différentes catégories de détails de fatigue se trouvent dans les tableaux AASHTO LTS-13 (ASD) 11.9.3.1-1 et AASHTO LTS-15 (LRFD) 11.9.3.1 -1.

L’assistant de signalisation routière affecte ces valeurs lors de la génération du modèle en fonction des données d’entrée. Si le modèle n’a pas été généré ou après la génération du modèle, l’utilisateur peut modifier ce tableau pour modifier les paramètres de fatigue pour les détails de connexion pour les deux extrémités de la membrure.

TIGES D'ANCRAGE

La commande Ancrages Signalisation Routière permet de définir les données d’entrée des ancrages.

Les résistances d’ancrage et les états limites sont calculés selon les clauses suivantes selon la norme sélectionnée.

-AASHTO LTS-15 (LRFD) clause 5.16.3

-AASHTO LTS-13 (ASD) clauses 5.17.4.1 à 5.17.4.3

La vérification de la fatigue des tiges d’ancrage est également calculée en fonction de la plage de contraintes admissibles (DF) TH spécifiée.

GÉNÉRATION DES CHARGES DE FATIGUE

Les combinaisons de charges de fatigue sont nécessaires pour calculer les forces statiques et les contraintes équivalentes dues à la charge cyclique. La résistance à la fatigue est spécifiée dans la clause 11.9 AASHTO LTS-15 LRFD et la clause 11.9 AASHTO LTS-13 ASD.

Cette option active l’entrée requise pour la vérification de la fatigue. Selon le type de structures, les vérifications de fatigue (galop, rafale de vent naturelle, rafale induite par camion) peuvent être activées ou non. L’utilisateur doit vérifier les charges de fatigue applicables en fonction de son type de structure en fonction des exigences du code AASHTO LTS.

RAFALES NATURELLES

Les contraintes naturelles des rafales de vent résultent de la variabilité inhérente à la direction et à la vitesse du flux d’air induit par le vent autour de la structure. Les rafales de vent naturelles sont les phénomènes les plus fondamentaux qui peuvent induire des charges cycliques dans les structures d’éclairage et de circulation. Elle est généralement appliquée aux panneaux aériens en porte-à-faux et non en porte-à-faux et aux supports de feux de circulation aériens.

RAFALES INDUITES PAR CAMION

Les charges de rafales induites par les camions sont causées par le passage des camions sous les structures de circulation. Ces rafales de vent sont causées par des camions en mouvement et créent une pression horizontale et verticale sur la structure. La vibration verticale du bras de mât entraîne les contraintes les plus critiques et donc seules les pressions verticales sont évaluées. Elle est généralement appliquée aux panneaux aériens en porte-à-faux et non en porte-à-faux et aux supports de feux de circulation aériens.

FONCTIONNALITÉS DE MODÉLISATION

GÉNÉRATION DU MODÈLE

Cet assistant permet de générer des superstructures de signalisation routière standard et non standard de type A1. Les modèles standards sont basés sur les plans types du ministère des Transports du Québec. Ces structures standard sont toujours supposées être constituées de tubes en aluminium.

Les étapes nécessaires à la création de telles structures sont les suivantes:

1-      Paramètres

2-      Dimensions de poutre

3-      Dimensions de colonne

4-      Panneaux de poutre

5-      Panneaux de colonne

6-      Socles

7-      Fin

•Lignes de construction droite ou circulaire pour la création des modèles
•Commandes sophistiquées pour la génération du modèle tel que les commandes déplacer, pivoter, extruder, copier, attacher, subdiviser et autres
•Les modèles peuvent être édités graphiquement ou à l’aide de tables
•Les éléments peuvent être créés en groupe ou un par un
•Les éléments des modèles peuvent être sélectionnés graphiquement ou selon un ensemble de critères
•Des groupes d’objets sélectionnés peuvent être créés et modifiés graphiquement ou à l’aide de tables
•Définition des membrures physique
•Sélection et édition par membrure physique
•Définition des surfaces de charges

•Grillages d’édition multiples avec espacement, angles et étiquettes définis par utilisateur
•Outils d’édition et de génération automatique puissants
•Les membrures peuvent être subdivisés en un nombre de segments égaux ou à des positions spécifiques

•Les membrures semblables reliés ensemble peuvent être fusionnées
•Les éléments de la structure peuvent être numérotés selon plusieurs critères
•Les attributs des éléments peuvent être spécifiés graphiquement ou à l’aide de tables (sections, paramètres d’analyse, angles de rotation, etc.)

•Les attributs des éléments peuvent être édités en groupe ou élément par élément
•Les charges peuvent être éditées graphiquement ou à l’aide de tables
•Création de modèles 2D simples ou de modèles 3D très complexes pour tout type de structures
•Membrures en acier, béton, aluminium, bois et composites
•Membrures et ressorts en tension et compression seulement
•Concept d’éléments physiques pour grouper différents éléments
•Plaques et coques d’éléments finis à trois ou quatre noeuds avec ou sans cisaillement transversal
•Rotation des membrures autour de leur axe longitudinal
•Fixités complètes, partielles ou rotulées en flexion
•Appuis de type ressort avec relâchement
•Appuis, ressorts et déplacements imposés inclinés
•Systèmes de coordonnées locales
•Réactions d’appui globales ou locales
•Les surfaces peuvent être utilisées pour le transfert de charges de même que pour le calcul du poids propre
•Les surfaces peuvent être utilisées pour simuler l’effet de diaphragme
•Bibliothèques de matériaux standards
•Matériaux personnalisés

CALCULATRICE GÉOMÉTRIQUE

•Assistant de génération de géométrie automatisé
•Un grand nombre de modèles de structures prédéfinis
•Plus de 30 treillis prédéfinis
•Dômes circulaires et paraboliques
•Cylindres et cônes composés de poutres et/ou de plaques

PROFILÉS STANDARDS ET BIBLIOTHÈQUES

SStandard sections (CISC, AISC and European)
Custom section libraries
Non-standard sections (over 30 shapes available)
Truss and pre-tensioned cable sections
User defined section properties
Composite sections are available

FONCTIONNALITÉS D'AFFICHAGE

Le programme parvient à redimensionner la taille des diverses images, y compris les boutons de la barre d’outils, afin de faciliter l’utilisation de l’interface pour l’utilisateur sur tous les écrans, même sur les écrans à très haute résolution.

•Affichage 3D de toutes les sections.
•Visualisation 3D ultrarapide en mode ligne de fer ou solide.
•Affichage personnalisé de tous les objets graphiques.
•Visualisation partielle du modèle.
•Résultats affichés à l’écran pour une partie ou pour la totalité de la structure.
•Résultats affichés pour chacun des éléments à l’aide de graphiques et de chiffriers.
•Résultats affichés pour un ensemble d’éléments à l’aide de chiffriers.

SYSTÈMES D'UNITÉS

Les systèmes métrique, impérial ou mixte sont disponibles et peuvent être modifiés en tout temps. Les rapports peuvent être imprimés selon le système désiré.

•Affichage graphique des résultats d’analyse sismique et dynamique
•Lignes de contour pour plaques d’éléments finis avec des bornes personnalisées.

Les fonctionnalités du logiciel HSE permettent d’afficher de la transparence pour les objets selon diverses composantes telles que la sélection actuelle, les membrures solides, les plaques, les surfaces, les objets spatiaux et les panneaux.

Le niveau de transparence peut être ajusté pour chaque objet à partir des options du menu d’affichage.

Les fonctionnalités du programme HSE permettent de générer automatiquement des éléments de détail dans un périmètre de maillage généré automatiquement.

Ces fonctionnalités sont spécifiquement liées à la zone de raffinement, à l’ouverture, à la contrainte linéaire et à la contrainte ponctuelle.  Tous les éléments de détail ajoutés au modèle HSE seront automatiquement connectés au maillage d’éléments finis.

Le périmètre de maillage connectera automatiquement tous les éléments déjà présents dans le modèle au périmètre de maillage s’ils sont dans le plan du contour du maillage.

RAPPORTS DÉTAILLÉS

•Les résultats peuvent être visualisés graphiquement ou numériquement.

•Rapport détaillé ou exécutif.

•Les données et les résultats peuvent être imprimés pour la structure entière ou pour une portion de la structure en utilisant des groupes d’éléments ou une plage d’éléments.

•Liste personnalisée de données et de résultats à imprimer.
•Les rapports sont disponibles dans plusieurs formats : rapport SAFI™, feuille de calcul Microsoft Excel, base de données Microsoft Access et fichier texte ASCII

IMPORTATION ET ÉCHANGE DE DONNÉES

IMPORTATION IFC (INDUSTRY FOUNDATION CLASSES)
L’intégration du format IFC dans le logiciel GSE permet l’importation de modèles provenant d’un grand nombre de logiciels d’architecture et de calcul des structures.

IFC (Industry Foundation Classes) est un format de données neutre et ouvert permettant la définition de classes associées à tous les objets de construction. Il est dédié au secteur du bâtiment (tous métiers) et vise l’interopérabilité logicielle (tous éditeurs, toutes applications).

IFC est le format le plus utilisé dans l’industrie pour échanger et partager les informations entre les différentes plateformes BIM (Building Information Modeling).

AutoCAD interface to import and export models by way of a DXF file.

The SDNF (Steel Detailing Neutral File) interface exports beams, columns and braces to SDNF compatible detailing software.

The KISS (Keep It Simple Steel) interface exports beams, columns and braces to KISS compatible estimation softwares.

IFC-Architecture interface for importing models from Revit or other IFC compliant programs.

If required, members subdivision and account for physical elements will be carried out automatically
The solid view of the structure may also be exported when exporting to AutoCAD.

STRUCTURES ALUMINIUM

Le programme calcule la résistance à la flexion, la compression, le cisaillement et la résistance combinée de l’aluminium en fonction des résultats d’une analyse de charge linéaire, P-Delta, non linéaire, sismique, dynamique ou de charges mobile. Les formes de sections symétriques, asymétriques et sections assemblées sont couvertes pour tous les codes de conception.
• Norme de conception d’aluminium
• Attributs des membrures – Aluminium
• Paramètres de la flexion
• Paramètres de la compression
• Paramètres des soudures
• Recalculer
• Vérification
• Re-design des membrures sélectionnées
• Résumé de conception

FLEXION

La résistance en flexion (Mr) d’une membrure est calculée selon les articles 9.5.2 (résistance de la section), 9.5.3 (déversement). Les élancements des parois minces sont déterminés selon les articles 8.2.1, 8.2.2, 8.3.1, 8.3.2 et 10.2.1.

La résistance au déversement est calculée en utilisant l’équation générale de déversement. L’équation présentée à l’article 9.5.3.2 est une simplification cette équation générale.

COMPRESSION

La résistance compression (Cr) d’une membrure est calculée selon les articles 9.4.1, 9.4.2 et 9.4.3. Les élancements des parois minces sont déterminés selon les articles 8.2.1, 8.2.2, 8.3.1, 8.3.2 et 10.2.1.

La contrainte de flambement en torsion est déterminée selon la méthode présentée à l’article 13.3.2 de la norme CSA S16-01 d’où les équations des articles 9.4.3.2 et 9.4.3.3 de la norme CSA S157-05 sont tirées (voir commentaire C9.4.3.3).

La résistance en compression d’une section assemblée est calculée selon l’article 9.8.2.

PARAMÈTRES DES SOUDURES

Les soudures ont une influence importante sur la résistance des éléments d’aluminium. Le programme distingue deux types de soudures soit des soudures aux extrémités et des soudures en travée. Chacune de ces soudures peut être pleine (affectant la section en entier) ou partielle (affectant une partie de la section).

Dans le cas de soudures pleines, les paramètres Ratio de Ag efficace, Ratio de Ix efficace et Ratio de Iy efficace ne sont pas utilisés.
Dans le cas de soudures partielles, les ratios doivent être spécifiés.

LOGICIEL HSE
HSE HIGHWAY STRUCTURAL ENGINEERING

ANALYSE

L’analyse structurale avancée du logiciel HSE permet à l’ingénieur de réaliser des analyses cruciales reliées à tous projets de l’industrie.

HSE HIGHWAY STRUCTURAL ENGINEERING

CONCEPTION ACIER

The HSE supports the required specifications of the AASHTO LTS-13 ASD (6th edition), AASHTO LTS-15 LRFD (1st edition) and AISC 360-10 LRFD.


HSE HIGHWAY STRUCTURAL ENGINEERING

CONCEPTION ALUMINIUM

Le logiciel HSE permet la conception en aluminium selon la norme américaine AA ADM-2015 (LRFD), la norme AA ADM-2015 (ASD) ainsi que la norme canadienne CAN / CSA-S157 pour les structures générales.