WAVE AND CURRENT LOADS

PSE PETROLEUM Structural Engineering® Software

  • Email : [email protected]
  • Toll Free (USA & Can): 1 800 810-9454
  • International: +1 418 654-9454
PSE PETROLEUM STRUCTURAL ENGINEERING

PSE : PETROLEUM STRUCTURAL ENGINEERING® SOFTWARE

OFFSHORE STRUCTURAL ANALYSIS AND DESIGN SOFTWARE

PSE SOFTWARE - WAVE AND CURRENT LOADS

Wave and current loads generated forces applied to submerged structural members in platforms and floating hulls are analyzed through linear and nonlinear kinematics in accordance with the API RP 2A specifications.

The PSE software computes wave and current forces applied on the structural members. The wave kinematics can be established using either Airy’s linear theory or Fenton’s nonlinear theory.

SPECIFICATIONS

NONLINEAR KINEMATIC THEORY

The linear kinematic theory is valid where the wave height is small compared to the water depth. On the other hand, the nonlinear kinematic theory, proposed by J.D. Fenton, solves the motion equations by representing the velocity potential and surface elevation with a Fourier series. The later method minimizes the error of each parameter governing the wave motion equations and is valid over the entire spectrum.

WAVE PROFILE

The PSE software accounts for the following wave profiles and kinematic parameters:
– Wave period
– Incidence angle
– Elevation of the sea bed
– Elevation of the still water line (SWL)
– Kinematic reduction factor
– Crest position criterion
A preview of the wave surface profiles, velocities and accelerations at any point is readily available.

MEMBER FORCES

The member forces, calculated using Morison equation, vary according to the position of the waves with respect to the structure. In order to obtain the maximum forces in the members, the critical position of the wave crest is determined by the program.

EFFECT OF MARINE GROWTH ON MEMBERS

Marine growth increases the cross section diameter and surface roughness of the members, and it is defined by a set of elevation-thickness pairs.

CURRENT PROFILE

With the PSE Petroleum Structural Engineering® software, the current profile is described with respect to the sea bed. The current speed is defined by a set of elevation-velocity-angle triplets and the reduction of the current speed in the vicinity of the structure or the blockage factor is accounted for.
In order to combine the current with the wave profile, the current needs to be stretched, or compressed, to the local wave surface. Two stretching methods are available:
– The linear stretching method, also known as the Wheeler stretching
– The nonlinear method or hyperbolic stretching

DOPPLER EFFECT

According to commentary C.3.2.1 of the design code API RP-2A- 2003, the Doppler effect is accounted for by calculating an apparent period defined as the wave period as seen by an observer moving with the current.

MEMBER WAVE LOADS

The input for the member wave loads consists of the following six parameters:
– Current profile
– Wave profile
– Marine growth profile
– Drag coefficient
– Inertia coefficient
– Shielding factor

PSE FEATURES

PSE PETROLEUM STRUCTURAL ENGINEERING

ADVANCED ANALYSIS

The advanced structural analysis of the PSE software allows the engineer to achieve specialized analyses crucial to offshore and onshore projects.

PSE PETROLEUM STRUCTURAL ENGINEERING

WIND LOADS

The API 4F specifications for wind loads based on the velocity component approach is integrated into the PSE Petroleum Structural Engineering software.

PSE PETROLEUM STRUCTURAL ENGINEERING

VESSEL DYNAMIC MOTIONS

In the PSE software, vessel dynamic motions are defined according to API 4F Specification for Drilling and Well Servicing Structures.

PSE PETROLEUM STRUCTURAL ENGINEERING

WAVE AND CURRENT LOADS

Wave and current loads are analyzed through linear and nonlinear kinematics in accordance with the API RP 2A specifications.

NONLINEAR KINEMATIC THEORY

WAVE PROFILE

CURRENT PROFILE

DOPPLER EFFECT

MEMBER WAVE LOADS

EFFECT OF MARINE GROWTH ON MEMBERS

MEMBER FORCES